

FLUXNET and Remote Sensing Open Workshop: Towards Upscaling Flux Information from Towers to the Globe Berkeley, CA, 7-9 June 2011

Unattended field spectrometric systems for continuous measurements of hyperspectral reflectance and fluorescence

S. Cogliati¹, M. Rossini¹, M. Meroni^{1, 2}, A. Barducci³, T. Julitta¹, M. Migliavacca^{1, 4}, F. Castagnoli³, L. Busetto¹, E. Cremonese⁵, M. Galvagno⁵, U. Morra di Cella⁵, R. Colombo¹

sergio.cogliati@unimib.it

⁽¹⁾Remote Sensing of Environmental Dynamics Lab., DISAT, University of Milan-Bicocca, Milan, Italy ⁽²⁾EC, DG-JRC, IES-MARS Unit, Ispra, VA, Italy - ⁽³⁾ NATIONAL RESEARCH COUNCIL, Florence, Italy - ⁽⁴⁾EC, DG-JRC, IES-CC Unit, Ispra, VA, Italy -⁽⁵⁾ARPA Valle d'Aosta, Aosta, Italy

1. BACKGROUND AND OBJECTIVE

Earth observing systems provide information of plant photosynthetic status derived from structural/biochemical properties (eg. LAI, chlorophyll content). Recent RS techniques offer the opportunity to investigate the energy dissipation pathways through the Photochemical Reflectance Index (PRI) and the analysis of the Sun-Induced Chlorophyll Fluorescence at O_2 -A (F@760) (Meroni et al., 2009). This contribution presents the development of automatic spectrometric systems capable of collecting unattended, continuous, long-term hyperspectral measurements to improve our knowledge on the relationships between vegetation optical properties and photosynthesis.

Detectors embedded

Data Acquisition Software

The automatic spectrometric systems developed (HSI-MRI) are able to simultaneously collect "fine" and "ultra-fine" spectrums using two spectrometers (Ocean Optics[®] High Resolution Spectrometers HR4000) sharing the same optical signal.

Spec.	FWHM (nm)	Sampling Interval (nm)	Spectral Range (nm)	Application
1	1 (fine)	0.25	400-1000	Irrad. measurements, p computation
2	0.1 (ultra-fine)	0.02	700-800	Fluorescence at O ₂ -A (F@760)

2a. OPTICAL SYSTEM DESCRIPTION

The HyperSpectral Irradiometer (HSI) (Meroni et al., 2011) is a custom designed instrument which employs a rotating arm to observe alternately the sky and the target surface. A cosine-response foreoptic is used to measure the solar incident irradiance (E^{TOT}) and the irradiance upwelling from the surface (E^{S}), allowing the computation of the BHR (Bi-Hemispherical Reflectance factor).

HSI in zenith (a) and nadir (b) view measuring the down- and up-welling irradiance, respectively.

Data acquisition of HSI-MRI is carried systems out through a custom developed software: **Auto3S**

> Meroni & Colombo: "3S : A novel program for field spectroscopy" 2009, Computer & Geoscience

2b. FIELD CAMPAIGNS

operated (2009/2010) in an alpine HSI was grassland (Italy, 45.84 N, 7.58 E, 2210 m ASL) with an eddy flux station. Spectral equipped measurements were acquired during daylight with a 5-minute sampling step during the growing season.

Multiplexer Radiometer Irradiometer (MRI) (Cogliati, 2011) employs an optical **multiplexer** (MPM2000, Ocean Optics®, USA) that switches the input of the spectrometers between incident irradiance (up-looking cosine-response optic) and radiance upwelling from the surface (downlooking bare fiber with a 25° FOV). MRI thus allows the measurement of the HCRF (Hemispherical-Conical Reflectance Factor).

Typical setup of MRI installation in field.

The **MRI** was employed in summer 2009 for the ESA campaign "Sen3Exp" near Pisa (Italy, 43.67) N, 10.30 E, 4 m ASL). In this experiment two growing cycles of an **alfalfa crop** were monitored for 27 days in coordination with eddy flux measurements.

3. CONCLUSIONS

• The development of two different automatic systems addresses the need to study the best optical equipment and measurement configuration (e.g. upwelling) radiance, L^S; upwelling irradiance, E^S) to quantify local scale vegetation properties and actual photosynthetic rate.

- Spectral sampling has been coordinated with eddy flux measurements to increase our understanding of the link between optical signals and gross primary productivity.
- Both spectral systems collect ground-truth observations that can be used to calibrate a RS hyperspectral imager and to validate retrieved products.

REFERENCES:

- S. Cogliati, 2011. Development of automatic spectrometric systems for proximal sensing of photosynthetic activity of vegetation. (PhD Thesis, University of Milano-Bicocca, 2011). http://boa.unimib.it/handle/10281/19798
- M. Meroni, A. Barducci, S. Cogliati, F. Castagnoli, M. Rossini, L. Busetto, M. Migliavacca, E. Cremonese, M. Galvagno, R. Colombo, and U. Morra di Cella. 2011. The hyperspectral irradiometer, a new instrument for long-term and unattended field spectroscopy measurements. Rev. Sci. Instrum. 82, 043106 (2011), DOI:10.1063/1.3574360
- Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R. and Moreno, J., 2009. Remote sensing of solar induced chlorophyll fluorescence: review of methods and applications. Remote Sensing of Environment, 113(10): 2037-2051.